grafx.processors.filter

class FIRFilter(fir_len=1023, processor_channel='mono', **backend_kwargs)

Bases: Module

A time-domain filter with learnable finite impulse response (FIR) coefficients. It is implemented with the FIRConvolution module.

Parameters:
  • fir_len (int, optional) – The length of the FIR filter (default: 1023).

  • processor_channel (str, optional) – The channel type of the processor, which can be either "mono", "stereo", or "midside" (default: "mono").

  • **backend_kwargs – Additional keyword arguments for the FIRConvolution.

forward(input_signals, fir)

Performs the convolution operation.

Parameters:
  • input_signals (FloatTensor, B×Cin×Lin) – A batch of input audio signals.

  • fir (FloatTensor, B×Cfilter×Lfilter) – A batch of FIR filters.

Returns:

A batch of convolved signals of shape B×Cout×Lin where Cout=max(Cin,Cfilter).

Return type:

FloatTensor

parameter_size()
Returns:

A dictionary that contains each parameter tensor’s shape.

Return type:

Dict[str, Tuple[int, ...]]

class BiquadFilter(num_filters=1, normalized=False, **backend_kwargs)

Bases: Module

A serial stack of second-order filters (biquads) with the given coefficients.

To ensure the stability of each biquad, we restrict the normalized feedback coefficients with the following activations [NSW21].

a¯i,1=2tanh(a~i,1),a¯i,2=(2|a¯i,1|)tanh(a~i,2)+|a¯i,1|2.
Here, a~i,1 and a~i,2 are the pre-activation values. The unnormlized coefficients can be optionally recovered by multiplying the normalized ones with ai,0. The learnable parameters are p={B,a~1,a~2,a0}, where B=[b0,b1,b2]RK×3 is the stacked biquad coefficients for the feedforward path and the latter three are the pre-activation values for the feedback path. The last one a0 is optional and only used when normalized == False.

Parameters:
  • num_filters (int, optional) – Number of biquads to use (default: 1).

  • normalized (bool, optional) – If set to True, the filter coefficients are assumed to be normalized by ai,0, making the number of learnable parameters 5 per biquad instead of 6 (default: False).

  • backend (str, optional) – The backend to use for the filtering, which can either be the frequency-sampling method "fsm" or exact time-domain filter "lfilter" (default: "fsm").

  • fsm_fir_len (int, optional) – The length of FIR approximation when backend == "fsm" (default: 8192).

forward(input_signals, Bs, A1_pre, A2_pre, A0=None)

Processes input audio with the processor and given parameters.

Parameters:
  • input_signals (FloatTensor, B×C×L) – A batch of input audio signals.

  • Bs (FloatTensor, B×K×3) – A batch of biquad coefficients, bi,0,bi,1,bi,2, stacked in the last dimension.

  • A1_pre (FloatTensor, B×K) – A batch of pre-activation coefficients a~i,1.

  • A2_pre (FloatTensor, B×K) – A batch of pre-activation coefficients a~i,2.

  • A0 (FloatTensor, B×K, optional) – A batch of ai,0 coefficients, only used when normalized == False (default: None).

Returns:

A batch of output signals of shape B×C×L.

Return type:

FloatTensor

parameter_size()
Returns:

A dictionary that contains each parameter tensor’s shape.

Return type:

Dict[str, Tuple[int, ...]]

class PoleZeroFilter(num_filters=1, **backend_kwargs)

Bases: Module

A serial stack of biquads with pole/zero parameters.

H(z)=gk=1K(zqk)(zqk)(zpk)(zpk)

The poles are restricted to the unit circle and reparameterized as follows,

pk=p~ktanh(|p~k|)|p~k|+ϵ.

p={g,p~,z} are the learnable parameters, where both complex poles and zeros are repesented as a real-valued tensors with last dimension of size 2.

Parameters:
  • num_filters (int, optional) – Number of biquads to use (default: 1).

  • **backend_kwargs – Additional keyword arguments for the IIRFilter.

forward(input_signals, log_gain, poles, zeros)

Processes input audio with the processor and given parameters.

Parameters:
  • input_signals (FloatTensor, B×C×L) – A batch of input audio signals.

  • log_gain (FloatTensor, B×1) – A batch of log-gains.

  • poles (FloatTensor, B×K×2) – A batch of complex poles.

  • zeros (FloatTensor, B×K×2) – A batch of complex zeros.

Returns:

A batch of output signals of shape B×C×L.

Return type:

FloatTensor

parameter_size()
Returns:

A dictionary that contains each parameter tensor’s shape.

Return type:

Dict[str, Tuple[int, ...]]

class StateVariableFilter(num_filters=1, **backend_kwargs)

Bases: Module

A series of biquads with the state variable filter (SVF) parameters [KPE20, Zav20].

The biquad coefficients reparameterized and computed from the SVF parameters Ri,Gi,ciHP,ciBP,ciLP as follows,

bi,0=Gi2ciLP+GiciBP+ciHP,bi,1=2Gi2ciLP2ciHP,bi,2=Gi2ciLPGiciBP+ciHP,ai,0=Gi2+2RiGi+1,ai,1=2Gi22,ai,2=Gi22RiGi+1.

Note that we are not using the exact time-domain implementation of the SVF, but rather its parameterization that allows better optimization than the direct prediction of biquad coefficients (empirically observed in [KPE20, LCL22, NSW21]). To ensure the stability of each biquad, we ensure that Gi and Ri are positive.

Parameters:
  • num_filters (int, optional) – Number of SVFs to use (default: 1).

  • **backend_kwargs – Additional keyword arguments for the IIRFilter.

forward(input_signals, twoR, G, c_hp, c_bp, c_lp)

Processes input audio with the processor and given parameters.

Parameters:
  • input_signals (FloatTensor, B×C×L) – A batch of input audio signals.

  • log_gains (FloatTensor, B×K) – A batch of log-gain vectors of the GEQ.

Returns:

A batch of output signals of shape B×C×L.

Return type:

FloatTensor

parameter_size()
Returns:

A dictionary that contains each parameter tensor’s shape.

Return type:

Dict[str, Tuple[int, ...]]

static get_biquad_coefficients(twoR, G, c_hp, c_bp, c_lp)
class BaseParametricFilter(**backend_kwargs)

Bases: Module

forward(input_signals, w0, q_inv)

Processes input audio with the processor and given parameters.

Parameters:
  • input_signals (FloatTensor, B×C×L) – A batch of input audio signals.

  • w0 (FloatTensor, B×1) – A batch of cutoff frequencies.

  • q_inv (FloatTensor, B×1) – A batch of the inverse of quality factors (or resonance).

Returns:

A batch of output signals of shape B×C×L.

Return type:

FloatTensor

static get_biquad_coefficients(cos_w0, alpha)
static filter_parameter_activations(w0, q_inv)
static compute_common_filter_parameters(w0, q_inv)
parameter_size()
Returns:

A dictionary that contains each parameter tensor’s shape.

Return type:

Dict[str, Tuple[int, ...]]

class LowPassFilter(**backend_kwargs)

Bases: BaseParametricFilter

Compute a simple second-order low-pass filter.

b=[1cos(ω0)2,1cos(ω0),1cos(ω0)2],a=[1+α,2cos(ω0),1α].

These coefficients are calculated with the following pre-activations: ω0=πσ(w~0) and α=sin(ω0)/2q where the inverse of the quality factor is simply parameterized as 1/q=exp(q~). This processor has two learnable parameters: p={w~0,q~}.

Parameters:

**backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha)
class HighPassFilter(**backend_kwargs)

Bases: BaseParametricFilter

Compute a simple second-order high-pass filter.

The feedforward coefficients are given as

b=[1+cos(ω0)2,1+cos(ω0),1+cos(ω0)2],

and the remainings are the same as the LowPassFilter.

Parameters:

**backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha)

Get biquad coefficients for high-pass filter.

class BandPassFilter(**backend_kwargs)

Bases: BaseParametricFilter

Compute a simple second-order band-pass filter.

The feedforward coefficients are given as

b=[α,0,α],

and the remainings are the same as the LowPassFilter.

Parameters:

**backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha)
class BandRejectFilter(**backend_kwargs)

Bases: BaseParametricFilter

Compute a simple second-order band-reject filter.

The feedforward coefficients are given as

b=[1,2cosω0,1],

and the remainings are the same as the LowPassFilter.

Parameters:

**backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha)
class AllPassFilter(**backend_kwargs)

Bases: BaseParametricFilter

Compute a simple second-order all-pass filter.

The feedforward coefficients are given as

b=[a2,a1,a0],

and the remainings are the same as the LowPassFilter.

Parameters:

**backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha)
class BaseParametricEqualizerFilter(num_filters=1, **backend_kwargs)

Bases: Module

forward(input_signals, w0, q_inv, log_gain)

Processes input audio with the processor and given parameters.

Parameters:
  • input_signals (FloatTensor, B×C×L) – A batch of input audio signals.

  • w0 (FloatTensor, B×1) – A batch of cutoff frequencies.

  • q_inv (FloatTensor, B×1) – A batch of the inverse of quality factors (or resonance).

Returns:

A batch of output signals of shape B×C×L.

Return type:

FloatTensor

static get_biquad_coefficients(cos_w0, alpha, A)
static filter_parameter_activations(w0, q_inv, log_gain)
static compute_common_filter_parameters(w0, q_inv)
parameter_size()
Returns:

A dictionary that contains each parameter tensor’s shape.

Return type:

Dict[str, Tuple[int, ...]]

class PeakingFilter(num_filters=1, **backend_kwargs)

Bases: BaseParametricEqualizerFilter

A second-order peaking filter.

The feedforward coefficients are given as

b=[1+αA,2cosω0,1αA],a=[1+αA,2cosω0,1αA],

where A=exp(A~). We follow the same activations as the LowPassFilter, and the learnable parameters are p={w~0,q~,A~}.

Parameters:
  • num_filters (int, optional) – Number of filters to use (default: 1).

  • **backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha, A)
class LowShelf(num_filters=1, **backend_kwargs)

Bases: BaseParametricEqualizerFilter

A second-order low-shelf filter.

The biquad coefficients are given as

b0=A((A+1)(A1)cosω0+2Aα),b1=2A((A1)(A+1)cosω0),b2=A((A+1)(A1)cosω02Aα),a0=(A+1)+(A1)cosω0+2Aα,a1=2((A1)(A+1)cosω0),a2=(A+1)+(A1)cosω02Aα,

The remainings are the same as the PeakingFilter.

Parameters:
  • num_filters (int, optional) – Number of filters to use (default: 1).

  • **backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha, A)
class HighShelf(num_filters=1, **backend_kwargs)

Bases: BaseParametricEqualizerFilter

A second-order high-shelf filter.

The biquad coefficients are given as

b0=A((A+1)+(A1)cosω0+2Aα),b1=2A((A1)+(A+1)cosω0),b2=A((A+1)+(A1)cosω02Aα),a0=(A+1)(A1)cosω0+2Aα,a1=2((A1)+(A+1)cosω0),a2=(A+1)(A1)cosω02Aα,

The remainings are the same as the PeakingFilter.

Parameters:
  • num_filters (int, optional) – Number of filters to use (default: 1).

  • **backend_kwargs – Additional keyword arguments for the IIRFilter.

static get_biquad_coefficients(cos_w0, alpha, A)