grafx.processors.filter
- class FIRFilter(fir_len=1023, processor_channel='mono', **backend_kwargs)
Bases:
Module
A time-domain filter with learnable finite impulse response (FIR) coefficients. It is implemented with the
FIRConvolution
module.- Parameters:
fir_len (
int
, optional) – The length of the FIR filter (default:1023
).processor_channel (
str
, optional) – The channel type of the processor, which can be either"mono"
,"stereo"
, or"midside"
(default:"mono"
).**backend_kwargs – Additional keyword arguments for the
FIRConvolution
.
- forward(input_signals, fir)
Performs the convolution operation.
- Parameters:
input_signals (
FloatTensor
, ) – A batch of input audio signals.fir (
FloatTensor
, ) – A batch of FIR filters.
- Returns:
A batch of convolved signals of shape
where .- Return type:
FloatTensor
- parameter_size()
- Returns:
A dictionary that contains each parameter tensor’s shape.
- Return type:
Dict[str, Tuple[int, ...]]
- class BiquadFilter(num_filters=1, normalized=False, **backend_kwargs)
Bases:
Module
A serial stack of second-order filters (biquads) with the given coefficients.
To ensure the stability of each biquad, we restrict the normalized feedback coefficients with the following activations [NSW21].
and are the pre-activation values. The unnormlized coefficients can be optionally recovered by multiplying the normalized ones with . The learnable parameters are , where is the stacked biquad coefficients for the feedforward path and the latter three are the pre-activation values for the feedback path. The last one is optional and only used whennormalized == False
.- Parameters:
num_filters (
int
, optional) – Number of biquads to use (default:1
).normalized (
bool
, optional) – If set toTrue
, the filter coefficients are assumed to be normalized by , making the number of learnable parameters per biquad instead of (default:False
).backend (
str
, optional) – The backend to use for the filtering, which can either be the frequency-sampling method"fsm"
or exact time-domain filter"lfilter"
(default:"fsm"
).fsm_fir_len (
int
, optional) – The length of FIR approximation whenbackend == "fsm"
(default:8192
).
- forward(input_signals, Bs, A1_pre, A2_pre, A0=None)
Processes input audio with the processor and given parameters.
- Parameters:
input_signals (
FloatTensor
, ) – A batch of input audio signals.Bs (
FloatTensor
, ) – A batch of biquad coefficients, , stacked in the last dimension.A1_pre (
FloatTensor
, ) – A batch of pre-activation coefficients .A2_pre (
FloatTensor
, ) – A batch of pre-activation coefficients .A0 (
FloatTensor
, , optional) – A batch of coefficients, only used whennormalized == False
(default:None
).
- Returns:
A batch of output signals of shape
.- Return type:
FloatTensor
- parameter_size()
- Returns:
A dictionary that contains each parameter tensor’s shape.
- Return type:
Dict[str, Tuple[int, ...]]
- class PoleZeroFilter(num_filters=1, **backend_kwargs)
Bases:
Module
A serial stack of biquads with pole/zero parameters.
The poles are restricted to the unit circle and reparameterized as follows,
are the learnable parameters, where both complex poles and zeros are repesented as a real-valued tensors with last dimension of size 2.- Parameters:
num_filters (
int
, optional) – Number of biquads to use (default:1
).**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- forward(input_signals, log_gain, poles, zeros)
Processes input audio with the processor and given parameters.
- Parameters:
input_signals (
FloatTensor
, ) – A batch of input audio signals.log_gain (
FloatTensor
, ) – A batch of log-gains.poles (
FloatTensor
, ) – A batch of complex poles.zeros (
FloatTensor
, ) – A batch of complex zeros.
- Returns:
A batch of output signals of shape
.- Return type:
FloatTensor
- parameter_size()
- Returns:
A dictionary that contains each parameter tensor’s shape.
- Return type:
Dict[str, Tuple[int, ...]]
- class StateVariableFilter(num_filters=1, **backend_kwargs)
Bases:
Module
A series of biquads with the state variable filter (SVF) parameters [KPE20, Zav20].
The biquad coefficients reparameterized and computed from the SVF parameters
as follows,Note that we are not using the exact time-domain implementation of the SVF, but rather its parameterization that allows better optimization than the direct prediction of biquad coefficients (empirically observed in [KPE20, LCL22, NSW21]). To ensure the stability of each biquad, we ensure that
and are positive.- Parameters:
num_filters (
int
, optional) – Number of SVFs to use (default:1
).**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- forward(input_signals, twoR, G, c_hp, c_bp, c_lp)
Processes input audio with the processor and given parameters.
- Parameters:
input_signals (
FloatTensor
, ) – A batch of input audio signals.log_gains (
FloatTensor
, ) – A batch of log-gain vectors of the GEQ.
- Returns:
A batch of output signals of shape
.- Return type:
FloatTensor
- parameter_size()
- Returns:
A dictionary that contains each parameter tensor’s shape.
- Return type:
Dict[str, Tuple[int, ...]]
- static get_biquad_coefficients(twoR, G, c_hp, c_bp, c_lp)
- class BaseParametricFilter(**backend_kwargs)
Bases:
Module
- forward(input_signals, w0, q_inv)
Processes input audio with the processor and given parameters.
- Parameters:
input_signals (
FloatTensor
, ) – A batch of input audio signals.w0 (
FloatTensor
, ) – A batch of cutoff frequencies.q_inv (
FloatTensor
, ) – A batch of the inverse of quality factors (or resonance).
- Returns:
A batch of output signals of shape
.- Return type:
FloatTensor
- static get_biquad_coefficients(cos_w0, alpha)
- static filter_parameter_activations(w0, q_inv)
- static compute_common_filter_parameters(w0, q_inv)
- parameter_size()
- Returns:
A dictionary that contains each parameter tensor’s shape.
- Return type:
Dict[str, Tuple[int, ...]]
- class LowPassFilter(**backend_kwargs)
Bases:
BaseParametricFilter
Compute a simple second-order low-pass filter.
These coefficients are calculated with the following pre-activations:
and where the inverse of the quality factor is simply parameterized as . This processor has two learnable parameters: .- Parameters:
**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha)
- class HighPassFilter(**backend_kwargs)
Bases:
BaseParametricFilter
Compute a simple second-order high-pass filter.
- Parameters:
**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha)
Get biquad coefficients for high-pass filter.
- class BandPassFilter(**backend_kwargs)
Bases:
BaseParametricFilter
Compute a simple second-order band-pass filter.
- Parameters:
**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha)
- class BandRejectFilter(**backend_kwargs)
Bases:
BaseParametricFilter
Compute a simple second-order band-reject filter.
- Parameters:
**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha)
- class AllPassFilter(**backend_kwargs)
Bases:
BaseParametricFilter
Compute a simple second-order all-pass filter.
The feedforward coefficients are given as
and the remainings are the same as the
LowPassFilter
.- Parameters:
**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha)
- class BaseParametricEqualizerFilter(num_filters=1, **backend_kwargs)
Bases:
Module
- forward(input_signals, w0, q_inv, log_gain)
Processes input audio with the processor and given parameters.
- Parameters:
input_signals (
FloatTensor
, ) – A batch of input audio signals.w0 (
FloatTensor
, ) – A batch of cutoff frequencies.q_inv (
FloatTensor
, ) – A batch of the inverse of quality factors (or resonance).
- Returns:
A batch of output signals of shape
.- Return type:
FloatTensor
- static get_biquad_coefficients(cos_w0, alpha, A)
- static filter_parameter_activations(w0, q_inv, log_gain)
- static compute_common_filter_parameters(w0, q_inv)
- parameter_size()
- Returns:
A dictionary that contains each parameter tensor’s shape.
- Return type:
Dict[str, Tuple[int, ...]]
- class PeakingFilter(num_filters=1, **backend_kwargs)
Bases:
BaseParametricEqualizerFilter
A second-order peaking filter.
The feedforward coefficients are given as
where
. We follow the same activations as theLowPassFilter
, and the learnable parameters are .- Parameters:
num_filters (
int
, optional) – Number of filters to use (default:1
).**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha, A)
- class LowShelf(num_filters=1, **backend_kwargs)
Bases:
BaseParametricEqualizerFilter
A second-order low-shelf filter.
- Parameters:
num_filters (
int
, optional) – Number of filters to use (default:1
).**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha, A)
- class HighShelf(num_filters=1, **backend_kwargs)
Bases:
BaseParametricEqualizerFilter
A second-order high-shelf filter.
- Parameters:
num_filters (
int
, optional) – Number of filters to use (default:1
).**backend_kwargs – Additional keyword arguments for the
IIRFilter
.
- static get_biquad_coefficients(cos_w0, alpha, A)