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ABSTRACT

Music mixing is compositional — experts combine multiple audio
processors to achieve a cohesive mix from dry source tracks. We
propose a method to reverse engineer this process from the input
and output audio. First, we create a mixing console that applies all
available processors to every chain. Then, after the initial console
parameter optimization, we alternate between removing redundant
processors and fine-tuning. We achieve this through differentiable
implementation of both processors and pruning. Consequently, we
find a sparse mixing graph that achieves nearly identical matching
quality of the full mixing console. We apply this procedure to dry-
mix pairs from various datasets and collect graphs that also can be
used to train neural networks for music mixing applications.

1. INTRODUCTION

Motivation — From a signal processing perspective, modern mu-
sic is more than the mere sum of source tracks. Mixing engineers
combine and control multiple processors to balance the sources
in terms of loudness, frequency content, spatialization, and much
more. Many attempts have been made to uncover parts of this
intricate process. Some have gathered expert knowledge [1, 2]
and built rule-based systems [3, 4]. More recent work has adopted
data-driven approaches. Neural networks have been trained to map
source tracks directly to a mix [5, 6] or to estimate parameters of
a fixed processing chain [7]. Yet, efforts to address the compo-
sitional aspects of the music mixing, such as which processors to
use for each track, are still limited. One possible remedy is to con-
sider a graph representation whose nodes and edges are processors
and connections between them, respectively. In other words, each
graph contains the essential information about the mixing process.
However, other than the dry source and mixed audio, no public
dataset provides such mixing graphs or related metadata [8, 9, 10],
which hinders this line of research. This is not surprising; besides
the cost of crowdsourcing, it is difficult to standardize the mixing
data from multiple engineers with different equipment. One recent
work [11] sidestepped this issue by creating synthetic graphs and
using them for training. However, this approach is not free from
downsides. Neural networks would suffer from poor generaliza-
tion unless the synthetic data distribution matches the real world.
Similar data-related issues arise in different domains, e.g., audio
effect chain recognition [12, 13] and synthesizer sound match-
ing [14, 15, 16]. Furthermore, real-world multitrack mixes have a
much larger number of source tracks and graph sizes, making syn-
thetic data generation more challenging. Therefore, it is desirable
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Figure 1: Music mixing graph search via iterative pruning.

to have a systematic, reliable, and scalable method for collecting
graphs. All these contexts lead us to ask: Can we find the mixing
graphs solely from audio?

Problem definition — Precisely, for each song (piece) whose dry
sources s1, · · · , sK and mix y are available, we aim to find an au-
dio processing graph G and its processor parameters P so that pro-
cessing the dry sources s1, · · · , sK results in a mix ŷ that closely
matches the original mix y. With a loss La that measures the match
quality on the mixture audio domain Y and regularization Lr, our
objective can be written as follows,

G∗,P∗ = argmin
G,P

[
La(ŷ, y) + Lr(G,P)

]
. (1)

Contributions — One might want to explore the candidate graphs
without any restriction. However, this makes the problem ill-posed
and underdetermined. The graph’s combinatorial nature makes the
search space G extremely large. Furthermore, we have to find the
processor parameters jointly. As a result, numerous pairs of graphs
and parameters can have similar match quality. Therefore, it is de-
sirable to add some restrictions, e.g., preferring structures that are
widely used by practitioners. To this end, we resort to the fol-
lowing pruning-based search; see Figure 1 for a visual illustration.
Inspired by a recent work [17], we first create a so-called “mixing
console” Gc (see Figure 2a for an example). It applies a fixed pro-
cessing chain to each source. Then, it subgroups the outputs, ap-
plies the chain again, and sums the processed subgroups to obtain
a final mix ŷ. This resembles the traditional hybrid mixing console
[18]. Each chain comprises 7 processors, including an equalizer,
compressor, and multitap delay. We implement all of them in a
differentiable manner [19, 20, 21]. This allows end-to-end opti-
mization of all parameters Pc with an audio-domain loss La via
gradient descent. After this initial console training, we proceed to
the pruning stage. Here, we search for a maximally pruned graph
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(a) Full mixing console (before pruning)
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(b) Pruned graph

Figure 2: Finding the sparse graph Gp from the differentiable mixing console Gc. Initial letters in the nodes denote their respective types.
i: input, o: output, m: mix, e: equalizer, c: compressor, n: noisegate, s: stereo imager, g: gain/panning, r: reverb, d: multitap delay.

Gp and its parameters Pp while maintaining the match quality of
the mixing console up to a certain tolerance τ ; this is shown as a
circle centered at y in Figure 1. Also, see Figure 2b for an exam-
ple pruned graph. We use iterative pruning, alternating between
the pruning and fine-tuning, i.e., optimization of the remaining pa-
rameters [22]. To collect graphs from multiple songs, it is crucial
to make the entire search efficient and fast. Pruning, in particular,
takes a significant amount of computation time; hence, we investi-
gate efficient and effective methods for pruning. During the prun-
ing, we need to find a subset of nodes that can be removed while
not harming the match quality. To achieve this, we view each pro-
cessor’s “dry/wet” parameter as an approximate importance score
and use it to select the candidate nodes. This approach gives 3
variants of the pruning method with different trade-offs between
the computational cost and resulting sparsity. It also draws con-
nections to neural network pruning [23, 24] where the binary prun-
ing operation is relaxed to continuous weights. Note that casting
the graph search into pruning is a double-edged sword. The prun-
ing only removes the processors and does not consider all possible
signal routings, reducing the search space (from grey to colored
regions in Figure 1). Consequently, it does not improve the match
quality over the mixing consoles. Nevertheless, the pruned graph
follows the real-world practice of selectively applying appropriate
processors. In other words, the sparsity is crucial for the graph’s
interpretability. Also, it keeps the search cost in a practical range,
which might be challenging with other alternatives [25, 26]. Our
method serves as a standalone reverse engineering algorithm [17],
but it can also be used to collect pseudo-label data to train neural
networks for music mixing applications. For example, we may ex-
tend existing methods for automatic mixing [3, 4, 5, 6, 7, 27] and
mixing style transfer [28] to output the graphs. This allows end
users to interpret and control the estimated outputs.

Data — We first report a list of datasets to which we can apply our
method. For each song, we need a pair of dry sources s1, · · · , sK
and a final mixture y. Additionally, we use subgrouping informa-
tion that describes how dry tracks are grouped together. There-
fore, we use the MedleyDB dataset [8, 9] as it provides all of
them. We also add the MixingSecrets library [10]. Since it
only provides the audio, we manually subgrouped each track based
on its instrument. Finally, we include our private dataset of West-
ern music mixes from multiple engineers (denoted as Internal).
The resulting ensemble comprises 1129 songs (188, 472, and 579
songs for each respective dataset). The number of dry tracks ranges
from 1 to 133, and the number of subgroups ranges from 1 to 26
(see Figure 6 for the statistics). Except for the final pruned graph
collection stage (Section 3.4), we use a random subset for the eval-
uations (a total of 72 songs, 24 songs for each dataset). Every
signal is stereo and resampled to 30kHz sampling rate.

Supplementary materials — Refer to the following link for audio
samples, pruned graphs, code, and appendices with supplementary
details: https://sh-lee97.github.io/grafx-prune.

2. DIFFERENTIABLE PROCESSING ON GRAPHS

An audio processing graph G = (V,E) is assumed to be directed
and acyclic (V and E denote the set of nodes and edges, respec-
tively). Each node vi ∈ V is either a processor or an auxiliary
module and has its type ti, e.g., e for an equalizer. Each processor
takes an audio ui and a parameter vector pi as input and outputs
a processed signal fi(ui, pi). Then, we further mix the input and
this processed result with a “dry/wet” weight wi ∈ [0, 1]. Hence,
the output yi of the processor vi is given as follows,

yi = wifi(ui, pi) + (1− wi)ui. (2)

We have the following 3 auxiliary modules:

• Input — It outputs one of the dry sources sk.
• Mix — We output the sum of the incomming signals.
• Output — A sum of its inputs is considered as a final output y.

Each edge eij ∈ E represents a “cable” that sends an output sig-
nal to another node as input. Throughout the text, we denote an
ordered collection from multiple nodes with a boldface letter, e.g.,
w for a weight vector, S for a source tensor, and P for a dictionary
with processor types as keys and their parameter tensors as values.
Under this notation, our task is to find G, P, and w from S and y.

2.1. Differentiable Implementation

Considering the music mixing, we use the following 7 processors.

• Gain/panning — We control both loudness and stereo panning
of input audio by multiplying a learnable scalar to each channel.

• Stereo imager — We change the stereo width of the input by
modifying the loudness of the side channel (left minus right).

• Equalizer — We use a finite impulse response (FIR) with a
length of 2047 to modify the input’s magnitude response. The
FIR is parameterized with its log magnitude (thus 1024 param-
eters). We apply inverse FFT of the magnitude with zero phase,
obtain a zero-centered FIR, and multiply it with a Hann win-
dow. We apply the same FIR to both the left and right channels.

• Reverb — We employ 2 seconds of filtered noise as an impulse
response for reverberation. First, we create a 2-channel uniform
noise, where these channels represent the mid and side. We fil-
ter the noise by multiplying an element-wise 2-channel magni-
tude mask to its short-time Fourier transform (STFT), where the
FFT sizes and hop lengths are 384 and 192, respectively. This

DAFx.2

https://sh-lee97.github.io/grafx-prune


Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

mask is constructed using the reverberation’s initial and decay-
ing log magnitudes. After the masking, we obtain the mid/side
filtered noise via inverse STFT, convert it to stereo, and perform
channel-wise convolutions with input to get an output.

• Compressor — We use a slight variant of the recently proposed
differentiable dynamic range compressor [21]. First, we obtain
the input’s smooth energy envelope. The smoothing is typically
done with a ballistics filter, but we instead use a one-pole filter
for speedup in GPU. Then, we compute the desired gain reduc-
tion from the envelope and apply it to the input audio.

• Noisegate — Except for the gain computation, its implementa-
tion is the same as that of the compressor.

• Multitap delay — For each (left and right) channel, we employ
independent 2 seconds of delay effects with a single delay for
every 100ms interval. To optimize delay lengths using gradient
descent, we employ surrogate complex damped sinusoids [29].
Each sinusoid is converted to a delayed soft impulse via inverse
FFT. Its angular frequency represents a continuous relaxation of
the discrete delay length. Each delay is filtered with a length-39
FIR equalizer to mimic the filtered echo effect [30].

Batched node processing — It is common to compute the graph
output signal by processing each node one by one [15, 19]. How-
ever, this severely bottlenecks the computation speed for large mix-
ing graphs. Therefore, we instead batch-process multiple nodes in
parallel. For the graph in Figure 2b, we can batch-process 1 equal-
izer e, 3 noisegates n, and 5 gain/pannings g sequentially. Then,
we aggregate the intermediate outputs to 2 subgroup mixes m (also
in parallel). This part is identical to graph neural networks’ “mes-
sage passing,” so we adopt their implementations [31]. We repeat
these parallel computations until we reach the output node o. By
doing so, we obtain the output faster; in this example, the num-
ber of sequential processing is reduced from 15 (one-by-one) to 8
(optimal). We empirically found that up to 5.8× speedup can be
achieved for the pruned graphs with a RTX3090 GPU. Refer to
our companion paper for further details [32].

2.2. Mixing Console

We construct a mixing console Gc as follows (see Figure 2a).
(i) We add an input node i for each source track.

(ii) We connect a serial chain (with a fixed order) of an equalizer
e, compressor c, noisegate n, stereo imager s, gain/panning
g, multitap delay d, and reverb r for each input.

(iii) We subgroup and sum the processed tracks with mix nodes
m based on the prepared subgrouping information.

(iv) We apply the same chain ecnsgdr to each mix output, then
pass it to the output node o (we omit the mix module here).

2.3. Optimization

Before exploring the pruning of each mixing console, as a sanity
check, we first evaluate its match performance. To investigate how
much each processor type contributes to the match quality, we start
with a base graph, a mixing console with no processors that simply
sums all the inputs. Then, we add each processor type one by
one to the processor chain (see the first column of Table 1). We
optimize and evaluate all these preliminary graphs for each song.
For each graph, we train its parameters and weights simultaneously
with an audio-domain loss given as follows,

La = αlrLlr + αmLm + αsLs (3)

Table 1: Matching performances of the mixing consoles using dif-
ferent processor type configurations.

La Llr Lm Ls

Base graph (sum of dry sources) 19.7 1.52 1.46 74.3

+ Gain/panning ecnsgdr .689 .686 .634 .752
+ Stereo imager ecnsgdr .676 .671 .623 .734
+ Equalizer ecnsgdr .557 .549 .493 .637
+ Reverb ecnsgdr .481 .471 .457 .523
+ Compressor ecnsgdr .423 .407 .385 .492
+ Noisegate ecnsgdr .414 .398 .375 .485

+ Multitap delay (full) ecnsgdr .409 .395 .375 .469

where each term Lx is a variant of multi-resolution STFT loss [33]
(x ∈ {lr,m, s}, lr: left/right, m: mid, s: side)

Lx =

I∑
i=1

[
∥ log Y (i)

x − log Ŷ
(i)
x ∥1

N
+
∥Y (i)

x − Ŷ
(i)
x ∥F

∥Y (i)
x ∥F

]
. (4)

Here, Y (i)
x and Ŷ

(i)
x denote the ith Mel spectrograms of the target

and predicted mixture, respectively. N , ∥ · ∥1, and ∥ · ∥F denote
the number of frames, l1 norm and Frobenius norm, respectively.
We use FFT sizes of 512, 1024, and 4096, and hop sizes are 1/4
of their respective FFT sizes. The number of Mel filterbanks is set
to 96 for all scales. We apply A-weighting before each STFT [34].
The per-channel loss weights are set to αlr = 0.5, αm = 0.25, and
αs = 0.25. The implementation is based on auraloss [35]. We
further add a regularization that promotes gain-staging, a common
practice of audio engineers that keeps the total energy of input and
output roughly the same. This is achieved with the following loss:

Lg =
∑

vi∈Vg

|log ∥fi(ui)m∥2 − log ∥ui,m∥2| (5)

where (·)m and ∥·∥2 denote mid channel and l2 norm, respectively.
We apply this regularization to a subset of processors Vg ⊂ V that
comprises all equalizers, reverbs, and multitap delays. This allows
us to (i) eliminate redundant gains that these linear-time invariant
(LTI) processors could create and (ii) restrict the parameters to be
in a reasonable range. Therefore, the total loss is given as

L(P,w) = La(P,w) + αgLg(P) (6)

where the gain-staging weight is set to αg = 10−3. Here, we used
a slightly different notation from Equation 1 to emphasize what is
optimized. Each console is optimized for 12k steps using AdamW
[36] with a 0.01 learning rate. For each step, we random-sample a
3.8s region of dry sources S (thus the batch size is 1), compute the
mix ŷ, and compare its last 2.8s with the corresponding ground-
truth y. Note that the first second is used only for the “warm-up"
of the processors with long states such as compressors and reverbs.

2.4. Results

Table 1 reports the evaluation results that are calculated over the
entire song. First, the base graph results in an audio loss La of
19.7. The side-channel loss Ls is especially large as most source
tracks are close to mono while the target mixes have wide stereo
images. With the gain/pannings and stereo imagers, we can achieve
“rough mixes” with a loss of 0.676. Then, we fill in the missing de-
tails with the remaining processor types. Every type improves the
match, and the full mixing console reports a loss of 0.409. Also,
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the top 5 rows of Figure 7 show mid/side log-magnitude STFTs of
the target mixes, matches of the mixing consoles, and their errors.
We report the results with 3, 4, 6, and 7 types where the choice of
processors and their order follow Table 1; see the supplementary
page for the results on other configurations and additional songs.
Again, we can observe that adding each type improves the match
from the spectrogram error plots. Furthermore, each song benefits
more from different types; for the song RockSteady, the multi-
tap delays improve the match more than the reverbs (Figure 7b),
which is different from the average trend. Yet, this is expected
since the original mix heavily uses the delay effects. Finally, we
note that mixes from MixingSecrets are more challenging to
match than the others; it reports a mean audio loss of 0.545, while
MedleyDB and Internal report 0.296 and 0.385, respectively.

3. MUSIC MIXING GRAPH SEARCH

Considering the full mixing console Gc as an upper bound in terms
of the matching performance, we want to find a sparser graph with
a similar match quality. We achieve this by pruning the console as
much as possible while keeping the loss increase up to a tolerance
threshold τ . This objective can be written as

minimize |Vp| s.t. minLa(Gp) ≤ minLa(Gc) + τ (7)

where Vp and | · | denote the pruned graph’s node set and its cardi-
nality, respectively. We define the pruning as removal of the nodes
Vc \ Vp and re-routing of their edges, in a way that is equivalent
to setting them to “bypass,” i.e., wi = 0 for vi ∈ Vc \ Vp. Also,
min(·) signifies that we are (ideally) interested in the optimized
audio loss. We only prune the processors, not the auxiliary nodes.
Hence, we define a pruning ratio ρ as the number of pruned pro-
cessors divided by the number of processors in the initial console.

3.1. Iterative Pruning

Finding the optimal (sparsest) solution V ∗
p is prohibitively expen-

sive. First, due to the interaction between the processors, we need
a combinatorial search. As such, we instead assume their inde-
pendence and prune the processors in a greedy manner. Following
the iterative approach [22], we gradually remove processors when-
ever the tolerance condition is satisfied. Under this setup, we still
need to fine-tune intermediate pruned graphs before evaluating the
tolerance condition. For reasonable computational complexity, we
simply omit this fine-tuning, paying the cost of possibly missing
more removable processors. Our method is summarized in Algo-
rithm 1 (in the following parentheses denote line numbers). First,
we construct a mixing console Gc = (V,E), optimize its param-
eters P and dry/wet weights w, and evaluate the loss (1-3). This
validation loss Lmin

a serves as a pruning threshold with the toler-
ance τ . Then, we alternate between pruning and fine-tuning, i.e.,
further optimization of the remaining parameters and weights (5-
18). Each pruning stage consists of multiple trials, which sample
subsets of candidates Vcand from the set of remaining processors
Vpool (8) and check whether they are removable (10). We keep the
pruning if the result satisfies the constraint or cancel it otherwise
(10-13). We repeat this process until the terminal condition (7) is
satisfied. Implementation-wise, we multiply binary masks, m and
mcand, to the weight vector w to mimic the pruning during the
trials (9). After that, we actually update the graph and remove the
pruned processors’ parameters and weights for faster search (16).
Sometimes, albeit rare, the pruning can improve the match. In this
case, we update the threshold (11).

Algorithm 1 Music mixing graph search with iterative pruning.

Input: A mixing console Gc, dry tracks S, and mixture y
Output: Pruned graph Gp, parameters P, and weights w

1: P,w← Initialize(Gc)
2: P,w← Train(Gc,P,w,S, y)
3: Lmin

a ← Evaluate(Gc,P,w,S, y)
4: Gp ← Gc

5: for n← 1 to Niter do
6: Vpool,m← GetAllProcessors(V ),1
7: while TryPrune(Vpool,w,m) do
8: Vcand,mcand ← SampleCandidate(Vpool,w)
9: La ← Evaluate(Gp,P,w ⊙m⊙mcand,S, y)

10: if La < Lmin
a + τ then

11: Lmin
a ← min(Lmin

a , La)
12: m←m⊙mcand

13: end if
14: Vpool = UpdatePool(Vpool, Vcand)
15: end while
16: Gp,P,w← Prune(Gp,P,w,m)
17: P,w← Train(Gp,P,w,S, y)
18: end for
19: return Gp,P,w

3.2. Candidate Sampling

The remaining design choices are choosing an appropriate candi-
date set Vcand (8, 14) and deciding when to terminate the trials (7).
We explore the following 3 approaches.
• Brute-force — We random-sample every processor one by one,

i.e., |Vcand| = 1. This granularity could achieve high sparsity,
but comes with a large computational cost.

• Dry/wet — For efficient pruning, we need an informed guess
of each node’s importance. Intuitively, we can use each dry/wet
weight wi as an approximate importance. This observation
leads to the following. For each pruning iteration:

(i) We create a set of remaining processor types Tpool. Next,
we count the number of processors of each type t ∈ Tpool,
denoted as Nt.

(ii) For each trial, we sample a type t ∈ Tpool and choose the
smallest-weight processors of that type as candidates. The
number of candidates is set to |Vcand| = max(1, ⌊rtNt⌉)
where rt denotes the portion of the chosen processors and
is initialized to 0.1 for every pruning iteration.

(iii) When the trial fails, we perform one of the following. If
|Vcand| > 1, we halve the candidate set, i.e., rt ← rt/2.
Otherwise, i.e., if |Vcand| = 1, we finish the search of this
type by removing it from the pool as Tpool ← Tpool\{t}.

(iv) We iterate above two (ii)-(iii) until Tpool = ∅.

This way, we can skip large-weight nodes and evaluate multiple
candidates, reducing the total number of trials. Note that if we
set rt = 0.5, this method is similar to the simple binary search.
However, it can lead to over-pruning of specific types sampled
early in (ii). Hence, we set rt to a more conservative value 0.1.

• Hybrid — Solely relying on the weight values could miss some
processors that can be pruned but have large weights. We mit-
igate this by combining the above two, running the brute-force
method for every 4th iteration.

By default, we use the hybrid method with tolerance τ = 0.01.
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Figure 3: Process of iterative pruning (hybrid, τ = 0.01). 24 songs (8 songs per dataset) are shown; each color represents an individual
song. The upper and lower rows show the pruning ratios and mean dry/wet weights. The yellow-shaded regions show the pruning phase.

Table 2: Pruning results with various candidate selection methods
and tolerance τ . The subscripts denote per-type pruning ratios.

τ La ρ ρg ρs ρe ρr ρc ρn ρd

Mix console − .409 − − − − − − − −
Brute-force .01 .424 .69 .54 .85 .53 .76 .71 .78 .69

Dry/wet .01 .420 .62 .51 .84 .38 .69 .66 .76 .53

Hybrid
.001 .411 .49 .35 .76 .27 .53 .57 .62 .34
.01 .422 .67 .51 .86 .46 .71 .71 .79 .63
.1 .499 .87 .73 .94 .81 .90 .85 .91 .92

3.3. Optimization

We use identical audio loss La and gain-staging regularization Lg.
To promote sparsity, we add a weight regularization Lp, a l1 norm
of the weight w. Hence, the full objective is as follows,

L(P,w) = La(P,w) + αgLg(P) + αpLp(w). (8)

We first train the console with 6k steps. Then, we repeat Niter =
12 rounds of pruning, each with 0.5k-step fine-tuning. As a result,
the total number of optimization steps is the same as the previous
console training. During the first 4k steps of the pruning phase, we
linearly increase the sparsity coefficient αp from 0 to 10−4. While
we halved the full console optimization steps, which could lead to
increased loss, it is justified due to the tight resource constraints.
With a RTX3090GPU, each song took about 56m, 29m, and 36m
using the brute-force, dry/wet, and hybrid methods, respectively.

3.4. Results

Pruning process — Figure 3 shows how the pruning progresses.
Each graph’s sparsity increases gradually while its weights adapt
over time. This trend is different for different processor types. The
mean objective metrics are reported in Table 2. The default setting
reports an average audio loss La of 0.422, an 0.013 increase from
the full consoles, slightly exceeding the tolerance τ = 0.01. This
was expected due to the shorter full console training. The average
pruning ratio ρ is 0.67 and the equalizer and stereo imager are the
most and least remaining types (0.46 and 0.86), respectively. We
note that MedleyDB and MixingSecrets report similar prun-
ing ratios of 0.61 and 0.62, respectively. However, the Internal
graphs are more sparse; their average pruning ratio is 0.77.
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Figure 4: Each node’s weight and loss increase when pruned.

Sampling method comparison — Here, we fix the tolerance τ to
0.01 and compare the candidate sampling approaches; see Table 2.
As expected, the brute-force method achieves the highest sparsity,
reporting a pruning ratio of 0.69. Its average audio loss is also the
highest, 0.424, an 0.015 increase from the mixing console result.
The dry/wet method prunes the least with 0.62, 7% lower than the
brute-force method. However, its audio loss is the lowest, 0.420,
as more processors remained. We can investigate the cause of this
difference in sparsity by analyzing the relationship between each
dry/wet weight wi and the loss increase ∆i caused by pruning the
processor vi defined as follows,

∆i = La(G \ {vi})− La(G). (9)

Figure 4 shows scatterplots for 2 random-sampled songs, one for
each song. Each point (wi,∆i) corresponds to each processor af-
ter the initial console training. To maximize the sparsity using the
dry/wet method, a monotonic relationship between the weights wi

and loss increases ∆i is desirable, which is unfortunately not the
case. Yet, a positive correlation exists, and this becomes more ev-
ident when we analyze the relationship for each type separately,
justifying the per-type candidate selection. Still, we cannot com-
pletely remove the weakness of the dry/wet method, leading us to
the hybrid strategy as a compromise. We note that the pruning
methods are not only different in sparsity but also in trade-offs be-
tween sparsity and match performance. By evaluating the methods
with more fine-grained tolerance settings (7 values from 0.001 to
0.2), we observed that the brute-force method finds graphs with
better matches even with the same graph size, closely followed by
the hybrid method; refer to the supplementary page for the details.
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ρ = 0.74, La = 0.525
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(c) τ = 0.1
ρ = 0.85, La = 0.611

Figure 5: Pruning results (hybrid method) with various tolerances. Song: TablaBreakbeatScience_RockSteady.

Choice of tolerance — Finally, we analyze the effect of the value
of tolerance τ . Even with a very low tolerance τ = 0.001, we can
nearly halve the number of processors, i.e., ρ = 0.49. If we set the
value too high, e.g., τ = 0.1, the resulting graphs are highly sparse
but degrade their matches (La = 0.499, i.e., 0.090 increase). The
default setting of τ = 0.01 seems “just right,” balancing the match
performance and graph sparsity. We can verify this with the spec-
trogram errors (bottom 3 rows for each subplot; see Figure 7 and
supplementary page). There is no noticeable degradation from the
full consoles to τ = 0.001 and 0.01.

Case study — We report the pruning method’s behavior from ob-
servations of the individual results.

• Recall that, for the song RockSteady, there was no clear per-
formance improvement when we added the reverbs (Figure 7b).
Hence, we can expect those reverbs to be pruned with a moder-
ate tolerance τ . Figure 5 shows that this is indeed the case; only
5/14 reverbs are left when τ = 0.001 and 0/14 for τ = 0.01,
which is much less than the average statistics (Table 2 and 3).
When τ = 0.1, processors for the details get removed; only the
gain/pannings and equalizers remain. See captions in Figure 5
for the pruning ratios and audio losses of the pruned graphs (the
full console has an audio loss of 0.523).

• The current pruning method fails to detect some redundant pro-
cessors. In Figure 5b, the bottom 2 sources are processed with 3
gain/pannings. Since there is no nonlinear or time-varying pro-
cessor between those, at least one can be “absorbed” by the oth-
ers. While this case can be handled with some post-processing,
it hints that we might have missed more sparse graphs.

• Each pruning of the same song yields a slightly different graph.
Pruning a mixing console of GirlOnABridge multiple times
resulted in graphs with the number of processors from 19 to 22.
This is because our iterative pruning has a stochastic and greedy
nature; candidates that were sampled early are more likely to be
pruned. Refer to the supplementary page for the pruned graphs.

• The pruning does not necessarily result in graphs that are close
to the maximum loss La(Gc)+ τ . For RockSteady, pruning
with τ = 0.01 resulted in a loss of 0.525, much lower than the
threshold. Interestingly, the τ = 0.001 case achieved the same
loss in spite of a much lower pruning ratio (0.56 versus 0.74).

• Processors for sources with short spans and low energy tend to
get pruned as their contributions to the audio loss are small. Yet,
we found that this could sometimes be perceptually noticeable.

Table 3: Pruning results with the default setting on the full dataset.

La ρ ρg ρs ρe ρr ρc ρn ρd

MedleyDB .431 .63 .37 .84 .44 .69 .74 .77 .57
MixingSecrets .625 .64 .50 .87 .33 .64 .63 .80 .69
Internal .434 .75 .70 .87 .55 .73 .85 .86 .72

Total .506 .69 .57 .87 .45 .69 .75 .82 .69

0 40 80 120

# Sources

Dataset
MedleyDB
MixingSecrets
Internal

0 10 20

# Subgroups

0 200 400

# Nodes (full)

0 .2 .4 .6 .8 1

Pruning ratio

0 200 400

# Nodes (pruned)

Figure 6: Statistics of the consoles and pruned graphs (full data).
Each dataset’s results are stacked to form the full histograms.

Full results — Finally, we pruned every song in the full dataset en-
semble. Table 3 reports the results. The overall trend follows the
evaluation subset results but with a higher mean audio loss (0.509
compared to the previous 0.422). Figure 6 shows statistics of the 3
datasets, initial mixing console graphs, and their pruned versions.
MedleyDB has the smallest number of source tracks, an average
of 17.6. The Internal dataset has the largest (28.8), closely
followed by the MixingSecrets (27.9). The Internal also
has more subgroups, resulting in even larger mixing consoles. This
is one potential cause of the higher sparsity of its pruned graphs;
more processors were initially used to match the mix, and many of
them were redundant. On average, 72.1 processors (108.5 nodes)
were remained for each song. Since each full mixing console has
an average of 247.6 processors (280.1 nodes), we achieved a prun-
ing ratio of 0.692.
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4. DISCUSSION

Summary — We started with a general formulation of retrieving
mixing graphs from dry sources and mix. Then, we posed restric-
tions to restrict the search to the pruning of mixing consoles, mak-
ing it computationally feasible and obtaining more interpretable
graphs. Next, with additional assumptions, we derived the iterative
method that gradually removes negligible processors in a stochas-
tic and greedy manner. As a result, instead of finding the exact op-
timal, our method gives (or “samples”) one of the close-to-optimal
graphs. With the differentiable processors and relaxation of the
pruning with the dry/wet weights, we optimized this objective via
gradient descent. We explored 3 methods to choose pruning can-
didates, comparing them in terms of their computational cost and
graph sparsity. The hybrid method gave a good compromise, so
we used it to gather over one thousand graph-audio pairs.

Future works — We list possible extensions of our method.
• The choice of processors and their implementations directly af-

fect the match quality. Our setup, including the equalizer with
zero-phase FIR and the reverb based on STFT mask, was mo-
tivated by its simplicity and fast computation on a GPU. How-
ever, there are other options, such as parametric equalizer [20]
and artificial reverberation [37], that allow more efficient com-
putation in the CPU and have compact parameterizations. Also,
the spectrogram errors showed clear temporal patterns (vertical
stripes), indicating that the loudness dynamics were not pre-
cisely matched. We suspect it is due to the ballistics approxima-
tion error, as recently reported [38]. If so, we might need a more
sophisticated implementation of the compressor and noisegate.
In addition, the current method did not consider time-varying
parameters (or “automation”), which can cause audible errors.
For example, we could not match fade-out, i.e., a gradual de-
crease in track loudness. Finally, we can add other processor
types, e.g., saturation/distortion [39] or modulation effects [40].

• We note several considerations to improve the current pruning
method in terms of sparsity, match quality, and interpretability.
First, we can modify the mixing console to reflect real-world
practices more. For example, we can add send and return loops
with additional processor chains. Post-equalizers for compres-
sors and processors with multiple inputs or outputs (e.g., aux-
iliary sidechain and crossover filter) are also commonly used.
Second, to prevent the pruning from harming the perceptual
quality, the tolerance condition and the objective function must
be appropriately designed. We used a simple multi-resolution
STFT loss [33, 35], which has been reported to miss some per-
ceptual features [41, 42]. Therefore, we might need an alter-
native objective as a remedy [43]. Third, as discussed before,
using average loss to determine the pruning might be inappro-
priate. Lastly, to increase the sparsity, more advanced neural
network pruning techniques [23, 24] and domain-specific post-
processing, e.g., merging LTI processors to a single processor
with the combined effect, can be applied.

• We may relax the prior assumptions and restrictions on graph
structures. This will expand our search space and require dif-
ferent search methods other than pruning. For example, allow-
ing arbitrary processor order extends our framework to different
architecture search [25, 26]. A completely different approach
based on reinforcement learning could also be possible [44].
While all of these are promising, balancing flexibility, match
quality, and computation cost will be the main challenge.
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Figure 7: Log-magnitude spectrograms of the matched mixes (odd
columns) of mixing consoles (4 center rows) and pruned graphs (3
bottom rows; in dB). The even columns show the match errors.
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