
A. RELATED WORKS

A.1. Composition of audio processors

Most audio processors are designed to modify some specific prop-
erties of their input signals, e.g., magnitude response, loudness dy-
namics, and stereo width. As such, combining multiple processors
is a common practice to achieve the full effect. Following the main
text, we will use the terminology “graph” to represent this compo-
sition, although some previous works considered simple structures
that allow a more compact form, e.g., a sequence. Now, we outline
the previous attempts that tried to estimate the processing graph
or its parameters from reference audio. These works differ in task
and domain, processors, graph structure, and estimation methods.
For example, if the references are dry sources and a wet mixture,
this task becomes reverse engineering [1, 2, 3, 4]. In terms of the
prediction targets, some fixed the graph and estimated only the pa-
rameters [5, 6, 4, 7, 8]. Others tried to predict the graph [3] or both
[1, 2, 9, 10]. Table 1 summarizes and highlights such differences.

A.2. Differentiable signal processing

Differentiable processor — Exact implementation or approxima-
tion of processors in an automatic differentiation framework, e.g.,
pytorch [11], enables parameter optimization via gradient de-
scent. Numerous efforts have been focused on converting existing
audio processors to their differentiable versions [4, 12, 13, 14, 15,
16]; refer to the recent review [17] and references therein for more
details. In many cases, these processors are combined with neural
networks, whose computation is done in GPU. Thus, converting
the audio processors to be “GPU-friendly” has been an active re-
search topic. For example, for a linear time-invariant (LTI) system
with a recurrent structure, we can sample its frequency response to
approximate its infinite impulse response (IIR) instead of directly
running the recurrence; the former is faster than the latter [15, 16].
However, it is nontrivial to apply a similar trick to nonlinear, recur-
rent, or time-varying processors. Typically, further simplifications
and approximations are employed, e.g., replacing the nonlinear re-
current part with an IIR filter [12] or assuming frame-wise LTI to
a linear time-varying system [14]. Sometimes, we can only ac-
cess input and output signals. In such a case, one can approximate
the gradients with finite difference methods [8, 18] or use a pre-
trained auxiliary neural network that mimics the processors [5]. In
the literature, these are also referred to as “differentiable;” hence,
it is rather an umbrella term encompassing all methods that obtain
the output signals or gradients within a reasonable amount of time.
Nevertheless, our work limits the focus to the implementations in
the automatic differentiation framework.

Audio processing graph — Now, consider a composition of mul-
tiple differentiable processors; the entire graph remains differen-
tiable due to the chain rule. However, the following practical con-
siderations remain. If we fix the processing graph prior to the op-
timization and the graph size is relatively small, we can imple-
ment the “differentiable graph” following the existing implemen-
tations [7, 6]. That is, we compute every processor one by one
in a pre-defined topological order. However, we have the follow-
ing additional requirements. First, the pruning changes the graph
during the optimization. Therefore, our implementation must take
a graph and its parameters along with the source signals as input
arguments for every forward pass. Note that this feature is also
necessary when training a neural network that predicts the param-

eters of any given graph [1]. Second, the size of our graphs is much
larger than the ones from previous works [7, 6, 9, 1]. In this case,
the one-by-one computation severely bottlenecks the computation
speed. Therefore, we derived a flexible and efficient graph compu-
tation algorithm (i) that can take different graphs for each forward
pass as input and (ii) performs batched processing of multiple pro-
cessors within a graph, utilizing the parallelism of GPUs. Finally,
we note that other than the differentiation with respect to the input
signals S and parameters P, one might be interested in differenti-
ation with respect to the graph structure G. The proposed pruning
method performs this to a limited extent; deletion of a node vi is a
binary operation that modifies the graph structure. We relaxed this
to a continuous dry/wet weight wi and optimized it with the audio
loss La and regularization Lp.

A.3. Graph search

Several independent research efforts in various domains exist that
search for graphs that satisfy certain requirements. For example,
neural architecture search (NAS) aims to find a neural network ar-
chitecture that achieves improved performance [19]. In this case,
the search space consists of graphs, with each node (or edge) rep-
resenting one of the primitive neural network layers. One partic-
ularly relevant work to ours is a differentiable architecture search
(DARTS) [20], which relaxes the choice of each layer to a cate-
gorical distribution and optimizes it via gradient descent. Theoret-
ically, our method can be naturally extended to this approach; we
only need to change our 2-way choice (prune or not) to (N + 1)-
way (bypass or select one of N processor types). DARTS is clearly
more flexible and general, allowing an arbitrary order of proces-
sors. However, it also greatly increases the computational cost, as
we must compute all N processors to compute their weight sum
for every node. For example, if we want to keep the mixing con-
sole structure and allow arbitrary processor choices, the memory
complexity becomes O(N2) instead of the current O(N). In other
words, we must pay additional costs to increase the size of the
search space. This cost increase is especially critical to us since
we have to find a graph for every song. Another popular related
domain is the generation/design of molecules with desired chemi-
cal properties [21]. One dominant approach for this task is to use
reinforcement learning (RL), which estimates each graph by mak-
ing a sequence of decisions, e.g., adding nodes and edges [22]. RL
is an attractive choice since we can be completely free with prior
assumptions on graphs, and we can use arbitrary quality measures
that are not differentiable. We also note that RL can be used for
NAS [23]. However, applying RL to our task has a risk of ob-
taining nontrivial mixing graphs that are difficult for practitioners
to interpret; we may need a soft regularization penalty that guides
the generation process towards familiar structures, e.g., ones like
the pruned mixing consoles. Also, it may need much larger com-
putational resources to explore the search space sufficiently.

B. DRY/WET PRUNING ALGORITHM

Algorithm 1 describes the details of the dry/wet method. For a sim-
pler description, we modified the initialization to include per-type
node sets and weights as in line 6-10. The termination condition
is given in line 11. The trial candidate sampling is implemented in
line 12-13. The candidate pool update is expanded to handle the
trial successes and failures separately, shown in line 18 and 20-25.

1

Table 1: A brief summary and comparison of previous works on estimation of compositional audio signal processing.

[6] Task & domain Sound matching [x] → [P]. The synthesizer parameters P were estimated to match the reference (target) audio x.

Processors Oscillators, envelope generators, and filters that allow parameter modulation as an optional input.
Graph Any pre-defined directed acyclic graph (DAG). For example, a subtractive synthesizer that comprises 2 oscillators, 1

amplitude envelope, and 1 lowpass filter were used in the experiments.
Method Trained a single neural backbone for the reference encoding, followed by multiple prediction heads for the parameters.

Optimized with a parameter loss and spectral loss, where the latter is calculated with every intermediate output.

[10] Task & domain Sound matching [x] → [P]. A frequency-modulation (FM) synthesizer matches recordings of monophonic instruments
(violin, flute, and trumpet). Estimates parameters of an operator graph that is empirically searched & selected.

Processors Differentiable sinusoidal oscillators, each used as a carrier or modulator, pre-defined frequencies. An additional FIR
reverb is added to the FM graph output for post-processing.

Graph DAGs with at most 6 operators. Different graphs for different target instruments.
Method Trained a convolutional neural network that estimates envelopes from the target loudness and pitch.

[9] Task & domain Sound matching [x] → [G,P]. Similar setup to the above [10] plus additional estimation of the operator graph G.

Processors Identical to [10], except for the frequency ratio that can be searched.
Graph A subgraph of a supergraph, which resembles a multi-layer perceptron (modulator layers followed by a carrier layer).
Method Trained a parameter estimator for the supergraph and found the appropriate subgraph G with an evolutionary search.

[2] Task & domain Reverse engineering [s, y] → [G,P] of an audio effect chain from a subtractive synthesizer (commercial plugin).

Processors 5 audio effects: compressor, distortion, equalizer, phaser, and reverb. Non-differentiable implementations.
Graph Chain of audio effects generated with no duplicate types (therefore 32 possible combinations) and random order.
Method Trained a next effect predictor and parameter estimator in a supervised (teacher-forcing) manner.

[3] Task & domain Blind estimation [y] → [G] and reverse engineering [s, y] → [G] of guitar effect chains.

Processors 13 guitar effects, including non-linear processors, modulation effects, ambience effects, and equalizer filters.
Graph A chain of guitar effects. Maximum 5 processors and a total of 221 possible combinations.
Method Trained a convolutional neural network with synthetic data to predict the correct combination.

[5] Task & domain Automatic mixing [S] → [P]. Estimated parameters of fixed processing chains from source tracks (K ≤ 16).

Processors 7 differentiable processors, where 4 (gain, polarity, fader, and panning) were implemented exactly. A combined effect
of the remaining 3 (equalizer, compressor, and reverb) was approximated with a single pre-trained neural network.

Graph Tree structure: applied a fixed chain of the 7 processors for each track, and then summed the chain outputs altogether.
Method Trained a parameter estimator (convolutional neural network) with a spectrogram loss end-to-end.

[8] Task & domain Reverse engineering of music mastering [s, y] → [P]

Processors A multi-band compressor, graphic equalizer, and limiter. Gradient approximated with a finite difference method.
Graph A serial chain of the processors.
Method Optimized parameters with gradient descent.

[1] Task & domain Blind estimation [y] → [G,P] and reverse engineering [S, y] → [G,P]. Estimates both graph and its parameters for
singing voice effect (K = 1) or drum mixing (K ≤ 6).

Processors A total of 33 processors, including linear filters, nonlinear filters, and control signal generators. Some processors are
multiple-input multiple-output (MIMO), e.g., allowing auxiliary modulations. Non-differentiable implementations.

Graph Complex DAG; splits (e.g., multi-band processing) and merges (e.g., sum and modulation). 30 processors max.
Method Trained a convolutional neural network-based reference encoder and a transformer variant for graph decoding and

parameter estimation. Both were jointly trained via direct supervision of synthetic graphs (e.g., parameter loss).

[4] Task & domain Reverse engineering [S, y] → [P] of music mixing. Estimated parameters of a fixed chain for each track.

Processors 6 differentiable processors: gain, equalizer, compressor, distortion, panning, and reverb.
Graph A chain of 5 processors (all above types except the reverb) for each dry track (any other DAG can also be used). The

reverb is used for the mixed sum.
Method Parameters were optimized with spectrogram loss end-to-end via gradient descent.

Ours Task & domain Reverse engineering [S, y] → [G,P] of music mixing. Estimated a chain of processors and their parameters for each
track and submix where K ≤ 130.

Processors 7 differentiable processors: gain/panning, stereo imager, equalizer, reverb, compressor, noisegate, and delay.
Graph A tree of processing chains with a subgrouping structure (any other DAG can also be used). Processors can be omitted

but should follow the fixed order.
Method Joint estimation of the soft masks (dry/wet weights) and processor parameters. Optimized with the spectrogram loss

(and additional regularizations) end-to-end via gradient descent. Accompanied by hard pruning stages.

2

Table 2: Per-dataset results of the mixing consoles with different processor type configurations.

MedleyDB MixingSecrets Internal

La Llr Lm Ls La Llr Lm Ls La Llr Lm Ls

Base graph ecnigdr 50.7 1.45 1.42 198 7.30 2.16 2.02 22.9 1.12 .951 .940 1.63

+ Gain/panning ecnsgdr .550 .583 .485 .550 .876 .856 .819 .973 .642 .619 .597 .734
+ Stereo imager ecnsgdr .541 .564 .483 .553 .847 .834 .791 .928 .538 .616 .595 .727
+ Equalizer ecnsgdr .450 .453 .390 .504 .700 .698 .622 .780 .522 .497 .467 .626
+ Reverb ecnsgdr .368 .361 .360 .390 .614 .601 .579 .674 .463 .451 .432 .517
+ Compressor ecnsgdr .315 .304 .297 .356 .558 .542 .512 .637 .396 .377 .347 .482
+ Noisegate ecnsgdr .302 .288 .281 .353 .548 .532 .502 .625 .393 .374 .343 .480

+ Multitap delay (full) ecnsgdr .296 .288 .284 .324 .545 .529 .502 .618 .385 .369 .338 .465

Table 3: Per-dataset results of the pruning. MC: mixing console. BF: brute-force, DW: dry/wet, and H: hybrid.

MedleyDB MixingSecrets Internal

τ La ρ ρg ρs ρe ρr ρc ρn ρd La ρ ρg ρs ρe ρr ρc ρn ρd La ρ ρg ρs ρe ρr ρc ρn ρd

MC − .296 − − − − − − − − .545 − − − − − − − − .385 − − − − − − − −
BF .01 .305 .63 .35 .81 .54 .77 .67 .71 .53 .566 .65 .50 .82 .43 .71 .61 .77 .75 .402 .80 .76 .92 .61 .81 .85 .87 .80

DW .01 .302 .56 .32 .79 .42 .74 .57 .56 .43 .561 .57 .47 .82 .22 .62 .54 .74 .55 .397 .74 .74 .82 .49 .70 .87 .86 .61

H
.001 .295 .44 .22 .73 .26 .61 .50 .54 .24 .550 .43 .35 .76 .13 .42 .43 .55 .38 .388 .59 .48 .77 .40 .57 .78 .77 .39
.01 .302 .61 .32 .81 .48 .74 .69 .71 .52 .563 .62 .49 .85 .34 .64 .60 .79 .65 .400 .77 .73 .93 .56 .75 .85 .86 .74
.1 .375 .83 .59 .93 .83 .92 .80 .84 .90 .648 .84 .70 .91 .75 .86 .83 .93 .91 .474 .93 .90 .99 .84 .92 .93 .95 .96

Algorithm 1 Music mixing graph search (dry/wet method).

Input: A mixing console Gc, dry tracks S, and mixture y
Output: Pruned graph Gp, parameters P, and weights w

1: P,w← Initialize(Gc)
2: P,w← Train(Gc,P,w,S, y)
3: Lmin

a ← Evaluate(Gc,P,w,S, y)
4: Gp ← Gc

5: for n← 1 to Niter do
6: Tpool ← GetProcessorTypeSet(V)
7: for t in Tpool do
8: Vt,wt ← Filter(V, t),Filter(w, t)
9: Nt, rt,mt ← |Vt|, 0.1,1

10: end for
11: while Tpool ̸= ∅ do
12: t← SampleType(Tpool)
13: V̄t, m̄← GetLeastWeightNodes(Vt,wt, ⌊Ntrt⌉)
14: La ← Evaluate(Gp,P,w ⊙m⊙ m̄,S, y)
15: if La < Lmin

a + τ then
16: Lmin

a ← min(Lmin
a , La)

17: m←m⊙ m̄
18: Vt ← Vt \ V̄t

19: else
20: if ⌊Ntrt⌉ > 1 then
21: rt ← rt/2
22: else
23: Tpool ← Tpool \ {t}
24: end if
25: end if
26: end while
27: Gp,P,w← Prune(Gp,P,w,m)
28: P,w← Train(Gp,P,w,S, y)
29: end for
30: return Gp,P,w

0.6 0.8
Pruning ratio

0
10 2

10 1

Lo
ss

 in
cr

ea
se

TheScarletBrand - LesFleursDuMal

Pruning method
Brute-force
Dry/wet
Hybrid

0.4 0.6 0.8

MalenkySlovos - Matterplay

Tolerance
0.001
0.002
0.005

0.01
0.02
0.05

0.1
0.2

Figure 1: Loss increases from the mixing console and pruning ra-
tios for different pruning methods and tolerances.

C. SUPPLEMENTARY RESULTS

• Table 2 and 3 report the per-dataset results on the mixing con-
soles and graph pruning, respectively.

• Figure 1 compares the pruning methods on 2 random-sampled
songs using 7 tolerance settings from 0.001 to 0.2.

• Figure 2 shows multiple graphs obtained by pruning the same
console (song) repeatedly.

• Refer to Figure 3-5 for more pruned graphs obtained with the
default setting — hybrid method and τ = 0.01.

• Figure 7-9 show more spectrogram plots.

3

o

scem
d

e

d

g

d

m

s

n

g

m

g

g

m

c

n

m

g

g

e

e

g

g

e

e

i

i

i

i

i

i

i

i

i

o

scem

c

d

d

e

e

s

g

g

m

m

m

n

n

m

g

g

g

g

g

g

e

e

i

i

i

i

i

i

i

i

i

o

sce

d

m

s

d

d

e

e

e

g

g

m

m

m

n

n

m

g

g

g

g

g

g

e

e

i

i

i

i

i

i

i

i

i

o

scem
d

e

e

s

g

g

m

m

m

n

n

m

g

g

g

g

g

g

e

e

i

i

i

i

i

i

i

i

i

o

scem
d

d

e

e

e

g

g

m

m

m

n

n

m

g

g

g

g

g

g

e

e

i

i

i

i

i

i

i

i

i

o

sc

d

e

s

m

e

e

e

d

d

m

m

m

g

g

m

g

g

g

g

g

g

e

e

i

i

i

i

i

i

i

i

i

Figure 2: Each pruning run (default setting) yields a slightly different graph. Song: EthanHein_GirlOnABridge.

o

dg

r

s

g

d

c

d

s

g

e

g

e

g

c

m

c

m

m

e

d

c

e

r

r

m

g

e

m

g

g

d

r

g

n

m

r

m

s

m

g

g

n

c

r

r

g

r

r

r

c

d

n

n

e

e

e

n

n

n

n

n

e

e

e

e

n

e

e

m

m

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

(a) Internal_part1_65536

o

rd

r

g

d

g

d

s

g

n

s

g

n

s

e

e

s

d

c

e

m

m

n

g

n

e

m

r

r

m

n

m

m

d

r

g

d

r

c

r

d

d

g

d

g

d

n

d

c

d

m

n

d

g

r

d

g

c

g

n

g

c

g

e

c

n

n

n

e

e

e

g

e

e

e

e

e

e

e

e

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

(b) DonCamilloChoir_TrudeTheBumblebee

Figure 3: Example pruned graphs (default setting). the number of tracks: K ≤ 20.

4

o

g

g

g

n

s

s

s

c

m

e

d

d

e

m

m

c

d

m

s

c

m

r

s

g

g

e

n

n

r

m

m

r

d

c

n

g

n

m

c

r

n

r

c

r

g

g

g

g

g

r

d

g

m

c

c

c

g

g

m

d

d

e

e

e

e

e

e

e

e

e

e

e

c

e

e

e

e

e

r

g

e

e

n

e

d

e

e

e

c

d

g

g

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

(a) LittleTybee_TheAlchemist

o

rdgn

g

c

s

e

e

g

m

s

g

d

m

e

r

s

e

c

c

r

m

d

r

e

m

e

e

g

r

g

d

r

m

r

m

m

r

n

g

r

n

g

g

g

g

g

g

g

r

c

c

m

c

g

c

c

c

c

c

c

d

m

n

n

g

c

g

e

e

m

c

e

e

e

e

e

e

e

e

e

g

e

c

n

e

e

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

(b) RaftMonk_Tiring

Figure 4: Example pruned graphs (default setting). the number of tracks: K > 20.

5

o

r

d

d

g

s

g

n

g

n

s

c

g

e

s

e

e

e

s

m

g

c

m

m

m

m

r

m

m

r

r

g

g

r

g

r

r

d

d

m

d

m

n

r

d

n

g

d

g

m

g

d

r

e

s

r

d

c

g

g

c

r

c

g

n

r

r

n

g

g

m

m

r

r

c

d

g

n

m

e

e

e

r

r

e

e

e

e

m

e

e

e

e

e

e

n

d

n

e

r

e

d

r

e

e

d

e

e

d

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

(a) Internal_part2_67692

o

s

g

r

c

s

d

r

d

d

m

e

g

e

c

s

e

e

r

m

e

e

m

d

e

e

m

m

d

d

m

m

g

e

m

m

r

r

g

d

g

r

r

r

n

m

r

g

r

d

c

n

c

g

c

d

d

d

n

n

g

c

g

c

r

g

r

r

g

d

g

g

g

c

r

c

d

n

e

e

e

e

e

e

r

e

e

e

e

e

e

r

e

e

e

e

e

g

g

e

e

g

e

g

e

g

e

r

g

e

e

c

e

e

e

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

(b) StevenClark_Bounty

Figure 5: Example pruned graphs (default setting). the number of tracks: K > 20 (continued).

6

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(a) Torres_NewSkin

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(b) TablaBreakbeatScience_RockSteady

Figure 6: Matching of target music mixes with mixing consoles and their pruned versions: MedleyDB dataset.

7

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(a) MusicDelta_SwingJazz

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(b) ChrisJacoby_BoothShotLincoln

Figure 7: Matching of target music mixes with mixing consoles and their pruned versions: MedleyDB dataset.

8

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(a) HowlProject_IfIWereABell

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(b) IanDearden_TeraniaCreekWalking

Figure 8: Matching of target music mixes with mixing consoles and their pruned versions: MixingSecrets dataset.

9

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(a) Internal_66680

0 1 2 3 4
0
500
1k
2k
4k
8k

Ta
rg

et

Mid Side

Ba
se

+G
ai

n/
pa

n
+I

m
ag

er
+E

Q
+R

ev
er

b
+C

om
p

+G
at

e
+D

el
ay

=
0.

00
1

=
0.

01
=

0.
1

-60 -40 -20 0 20 -18 -9 0 9 18

(b) Internal_67954

Figure 9: Matching of target music mixes with mixing consoles and their pruned versions: Internal dataset.

10

D. REFERENCES

[1] S. Lee, J. Park, S. Paik, and K. Lee, “Blind estimation of
audio processing graph,” in IEEE ICASSP, 2023.

[2] C. Mitcheltree and H. Koike, “SerumRNN: Step by step au-
dio VST effect programming,” in Artificial Intelligence in
Music, Sound, Art and Design, 2021.

[3] J. Guo and B. McFee, “Automatic recognition of cascaded
guitar effects,” in DAFx, 2023.

[4] J. Colonel, “Music production behaviour modelling,” 2023.

[5] C. J. Steinmetz, J. Pons, S. Pascual, and J. Serrà, “Automatic
multitrack mixing with a differentiable mixing console of
neural audio effects,” in IEEE ICASSP, 2021.

[6] N. Uzrad et al., “DiffMoog: a differentiable modular synthe-
sizer for sound matching,” arXiv:2401.12570, 2024.

[7] J. Engel, L. H. Hantrakul, C. Gu, and A. Roberts, “DDSP:
differentiable digital signal processing,” in ICLR, 2020.

[8] M. A. Martínez-Ramírez, O. Wang, P. Smaragdis, and N. J.
Bryan, “Differentiable signal processing with black-box au-
dio effects,” in IEEE ICASSP, 2021.

[9] Z. Ye, W. Xue, X. Tan, Q. Liu, and Y. Guo, “NAS-
FM: Neural architecture search for tunable and inter-
pretable sound synthesis based on frequency modulation,”
arXiv:2305.12868, 2023.

[10] F. Caspe, A. McPherson, and M. Sandler, “DDX7: Differen-
tiable FM synthesis of musical instrument sounds,” in ISMIR,
2022.

[11] A. Paszke et al., “PyTorch: An imperative style, high-
performance deep learning library,” NeurIPS, 2019.

[12] C. J. Steinmetz, N. J. Bryan, and J. D. Reiss, “Style transfer
of audio effects with differentiable signal processing,” JAES,
vol. 70, no. 9, 2022.

[13] J. T. Colonel, M. Comunità, and J. Reiss, “Reverse engineer-
ing memoryless distortion effects with differentiable wave-
shapers,” in AES Convention 153, 2022.

[14] A. Carson, S. King, C. V. Botinhao, and S. Bilbao, “Differ-
entiable grey-box modelling of phaser effects using frame-
based spectral processing,” in DAFx, 2023.

[15] S. Nercessian, “Neural parametric equalizer matching using
differentiable biquads,” in DAFx, 2020.

[16] S. Lee, H.-S. Choi, and K. Lee, “Differentiable artificial re-
verberation,” IEEE/ACM TASLP, vol. 30, 2022.

[17] B. Hayes, J. Shier, G. Fazekas, A. McPherson, and C. Saitis,
“A review of differentiable digital signal processing for mu-
sic & speech synthesis,” Frontiers in Signal Process., 2023.

[18] C. J. Steinmetz, T. Walther, and J. D. Reiss, “High-fidelity
noise reduction with differentiable signal processing,” in AES
Convention 155, 2023.

[19] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture
search: A survey,” Journal of Machine Learning Research,
vol. 20, no. 55, 2019.

[20] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable
architecture search,” in ICLR, 2019.

[21] D. C. Elton, Z. Boukouvalas, M. D. Fuge, and P. W. Chung,
“Deep learning for molecular design—a review of the state
of the art,” Molecular Systems Design & Engineering, vol. 4,
no. 4, 2019.

[22] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph
convolutional policy network for goal-directed molecular
graph generation,” NeurIPS, 2018.

[23] B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” arXiv preprint arXiv:1611.01578,
2016.

11

	�匀e�愀r�挀h�椀n�最 F�漀r �䴀u�猀i�挀 M�椀x�椀n�最 G�爀a�瀀h�猀: �䄀 P�爀u�渀i�渀g �䄀p�瀀r�漀a�挀h
	A Related Works
	A.1 Composition of audio processors
	A.2 Differentiable signal processing
	A.3 Graph search

	B Dry/wet Pruning Algorithm
	C Supplementary Results
	D References

